

PCI-/cPCI-/LPCI-/LPCIe-723X Series

32-CH Isolated Digital I/O Card

User's Manual

 Manual Rev.
 4.05

 Revision Date:
 June 24, 2008

 Part No:
 50-11037-1000

Advance Technologies; Automate the World.

Copyright 2008 ADLINK TECHNOLOGY INC.

All Rights Reserved.

The information in this document is subject to change without prior notice in order to improve reliability, design, and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

Trademarks

NuDAQ, NuIPC, DAQBench are registered trademarks of ADLINK TECHNOLOGY INC.

Product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.

Getting Service from ADLINK

Customer Satisfaction is top priority for ADLINK Technology Inc. Please contact us should you require any service or assistance.

ADLINK TECHNOLOGY INC.

Web Site:	http://www.adlinktech.com
Sales & Service:	Service@adlinktech.com
TEL:	+886-2-82265877
FAX:	+886-2-82265717
Address:	9F, No. 166, Jian Yi Road, Chungho City,
	Taipei, 235 Taiwan

Please email or FAX this completed service form for prompt and satisfactory service.

Company Information							
Company/Organization							
Contact Person							
E-mail Address							
Address							
Country							
TEL	FAX:						
Web Site							
F	Product Information						
Product Model							
Environment	OS: M/B: Chipset:	CPU: BIOS:					

Please give a detailed description of the problem(s):

Table of Contents

Та	able o	f Contents	i
Li	st of ⁻	Tables	iii
Li	st of I	Figures	iv
1	Intro	duction	1
	1.1	Features	
		PCI-7230, cPCI-7230, LPCI-7230, and LPCIe-7230 Fea	-
		tures	
		PCI-7233 Features	
		PCI-7234/7234P Features	3
	1.2	PCI-7230/cPCI-7230/LPCI-7230/LPCIe-7230	
		Specifications	
		Isolated Digital I/O (DIO)	
		General Specifications	
	1.3	PCI-7233 Specifications	
		Isolated Digital Input	
		General Specifications	. 6
	1.4	PCI-7234/7234P Specifications	
		Isolated Digital Output	
		General Specifications	
	1.5	Software Support	
		Windows Drivers	
		Linux Drivers	
		Third-party Software Support	
		VEE™ Interface for ADLINK DAQ Cards	
		Componentware/ActiveX Control	
		Applications for Test and Measurement	19
2	Insta	Illation	21
	2.1	What You Have	21
	2.2	Unpacking	21
	2.3	Hardware Installation Outline	22
		PCI configuration2	22
		PCI slot selection	22
	2.4	Device Installation for Windows Systems	23
	2.5	Connector Pin Assignment 2	

		PCI-7230 Pin Assignment	. 24
		cPCI-7230 Pin Assignment	. 26
		LPCI/LPCIe-7230 Pin Assignment	
		PCI-7233 Pin Assignment	. 30
		PCI-7234 Pin Assignment	
		PCI-7234P Pin Assignment	
	2.6	Termination Board Connection	
3	Regi	ster Format	37
	3.1	PCI PnP Registers	37
	3.2	I/O Registers Format	
	3.3	Digital Input Register	
	3.4	Digital Output Register	
4	Oper	ration Theory	41
	4.1	Isolated Digital Input Circuits	
	4.2	Isolated Digital Output Circuits	
	4.3	Change of State Detection	
		What is COS?	
		Structure of COS detection and Dual Interrupt System	
		COS Detection	

List of Tables

Table 3-1	1: I/O Address Map of PCI-7230/cPCI-7230/LPC	CI-7230/LP-
	Cle-7230	38
Table 3-2	2: I/O Address Map of PCI-7233	38
Table 3-3	3: I/O Address Map of PCI-7234/7234P	38
Table 3-4	4: Digital Input Register	39
Table 3-5	5: Digital Output Register	40
Table 4-1	1: Differential Input circuits of cPCI-7230/LPCI-7	230/LPCIe-
	7230	42

List of Figures

Figure 2-1:	PCI-7230 Pin Assignment	24
Figure 2-2:	PCI-7230 Onboard Power and Ground terminal	25
Figure 2-3:	cPCI-7230 Pin Assignment	26
Figure 2-4:	LPCI/LPCIe-7230 Pin Assignment	28
Figure 2-5:	PCI-7233 Pin Assignment	30
Figure 2-6:	PCI-7233 Onboard Power and Ground terminal	31
Figure 2-7:	PCI-7234 Pin Assignment	32
Figure 2-8:	PCI-7234 Onboard Power and Ground terminal	33
Figure 2-9:	PCI-7234P Pin Assignment	34
Figure 2-10:	PCI-7234P Onboard Power and Ground terminal	35
Figure 4-1:	Input circuits of 7230 and 7233 series	41
Figure 4-2:	Isolate output circuits of PCI-7234 (sink current)	43
Figure 4-3:	Isolate output circuits of PCI-7234P (source current)	43
Figure 4-4:	Isolation Output to TTL Input connection	44
Figure 4-5:	Isolation Output to Isolation Input connection	45
Figure 4-6:	Dual Interrupt System of PCI-7233	47
Figure 4-7:	Example of COS detection	48

1 Introduction

This manual lists and describes the components of the PCI-723X family products, which includes:

- ▶ PCI-7230: Isolated 16-CH DI and 16-CH DO Card
- ► PCI-7233: Isolated 32-CH DI Card with COS detection
- ▶ PCI-7234: Isolated 32-CH DO Card
- PCI-7234P: Isolated 32-CH DO Card with Source Current Transistor
- cPCI-7230: Isolated 16-CH DI and 16-CH DO Module for 3U CompactPCI
- LPCI-7230: Isolated 16-CH DI and 16-CH DO Card for lowprofile PCI
- LPCIe-7230: Isolated 16-CH DI and 16-CH DO Card for low-profile PCI Express

These products have high isolation voltage with either 32 DI or 32 DO channels. The high isolation voltage protects the user's computer against damage caused by accidental contact with high external voltage and eliminates troublesome ground loops.

The PCI-7230/cPCI-7230/LPCI-7230/LPCIe-7230 provides 16 isolated inputs and 16 isolated outputs. The PCI-7230/cPCI-7230 isolated I/O channels are isolated to 5000 Vrms, and LPCI/LPCIe-7230 isolated I/O channels are isolated to 2500 Vrms (excluding cables).

The PCI-7233 provides 32 isolated digital input channels with COS (change-of-state detection).

The PCI-7234/7234P provides 32 isolated digital output (Darlington transistor) channels. The isolation voltage is high up to 5,000 Vrms (excluding cables), both channel-to-channel and channel-tocomputer. (PCI-7234 is sink current DO card, PCI-7234P is source current DO card).

The PCI-7230/7233/7234 use ASIC PCI controller to interface the board to the PCI bus. The ASIC fully implement the PCI local bus specification Rev 2.1. All bus relative configurations, such as base memory address and interrupt assignment, are automatically controlled by BIOS software. It does not need any user interaction and

pre-study for the configurations. This removes the burden of searching for a conflict-free configuration, which can be very time-consuming and difficult with some other bus standards.

1.1 Features

PCI-7230, cPCI-7230, LPCI-7230, and LPCIe-7230 Features

- Supports a 32-bit 5 V PCI bus (PCI-7230)
- 3U Eurocard form factor, CompactPCI Compliant (PICMG 2.0 Rev 2.1) (cPCI-7230)
- ► Support a 32-bit 3.3 V or 5 V PCI bus (LPCI-7230)
- ► x1 lane PCI Express Interface (LPCIe-7230)
- ▶ 16 isolated Digital Input Channels
- ► 16 isolated Digital Output Channels
- ► High output driving capability
- 5000 Vrms high voltage isolation (for PCI-7230 and cPCI-7230), 2500 Vrms high voltage isolation (for LPCI-7230 and LPCIe-7230)
- Two external interrupt sources
- ► 500 mA max@ 100% duty, for one of the eight transistor devices ON
- Up to 24V voltage protection for isolated input
- ► 37-pin D-type connector (for PCI-7230)
- ► 50-pin SCSI-II type connector (for cPCI-7230, LPCI-7230, and LPCIe-7230)

PCI-7233 Features

- 32 Isolated Digital Input Channels
- ▶ 5000 Vrms high voltage isolation
- ► Up to 24 V voltage protection for isolated input
- ► Interrupt is generated by COS (change-of-state) detection
- Dual interrupt trigger
- ► 37-pin D-type connector

PCI-7234/7234P Features

- ▶ 32 Isolated Digital Output Channels
- ► High output driving capability
- 500 mA max@ 100% duty, for one of the eight transistor devices ON (PCI-7234: sink current, PCI-7234P: source current)
- ► 5,000 Vrms high voltage isolation
- ► 37-pin D-type connector

1.2 PCI-7230/cPCI-7230/LPCI-7230/LPCIe-7230 Specifications

Isolated Digital I/O (DIO)

- Optical Isolated Input Channel
- Numbers of Channel: 16 digital inputs
- ▶ Input Voltage: up to 24Vdc
 - ▷ Logic "L": 0 to 1.5 V
 - ▷ Logic "H": 5 to 24 V
- Input resistance:1.2 KΩ @ 0.5 W
- Isolated voltage: 5000 Vrms (for PCI-7230 and cPCI-7230), 2500 Vrms (for LPCI-7230 and LPCIe-7230)
- Throughput:10 KHz
- Optical Isolated Output channel:
 - ▷ Numbers of Channel: 16 digital outputs
 - > Output type: Darlington transistors
 - Output Voltage: open collector 5 V_{DC} (min.), up to 35 V_{DC} (max.)
- Sink Current:
 - 500 mA max @ 100% duty, for one of the eight transistor devices ON
 - ▷ 370 mA @ duty 10% for all transistors devices ON
 - > 130 mA @ duty 50% for all transistors devices ON

(Note: the pulse width is 25 ms for one duty cycle.)

- Throughput: 10 KHz
- Interrupt sources: Channel 0 and channel 1 of digital input channels

General Specifications

- Connector:
 - ▷ 37-pin D-type connector for PCI-7230
 - 50-pin SCSI-II type connector for cPCI-7230, LPCI-7230, and LPCIe-7230
- Operating Temperature: 0 to 60°C
- ▶ Storage Temperature: -20 to 80°C
- ▶ Humidity: 5 to 95%, non-condensing
- Power Consumption:
 - PCI-7230: +5V @ 150 mA (typical)

(Note: Requires external power)

- cPCI-7230: +5V @ 270 mA (typical)
- LPCI-7230: +5 V @ 150 mA (typical)
- ▷ LPCIe-7230: +3.3 V @ 279 mA (typical)
 - +12 V @ 133 mA (typical)
- Dimension: Compact size, not including connectors
 - PCI-7230: 153mm(L) X 107mm(H)
 - cPCI-7230: 160 mm(L) X 100 mm(H)
 - LPCI-7230: 120 mm(L) X 65 mm(H)
 - LPCIe-7230: 119.9 mm(L) x 68.9 mm(H)

1.3 PCI-7233 Specifications

Isolated Digital Input Optical Isolated Input

- Numbers of Channel: 32 digital inputs
- ▶ Input Voltage: up to 24Vdc
 - ▷ Logic "L": 0 to 1.5V
 - ▷ Logic "H": 5 to 24V
- Input resistance:1.2 KΩ @ 0.5W
- ► Isolated voltage: 5000Vrms
- Throughput: 10KHz
- Dual-interrupt sources:
 - Change-of-state (COS) on any 16 DI lines of LSB
 - Change-of-state (COS) on any 16 DI lines of MSB

General Specifications

- Connector: 37-pin D-type connector
- ► Operating Temperature: 0°C to 60°C
- ► Storage Temperature: -20°C to 80°C
- ► Humidity: 5 to 95%, non-condensing
- Power Consumption: +5V @ 300 mA
- ▶ Dimension: Compact size only 158 mm x 107 mm

1.4 PCI-7234/7234P Specifications

Isolated Digital Output

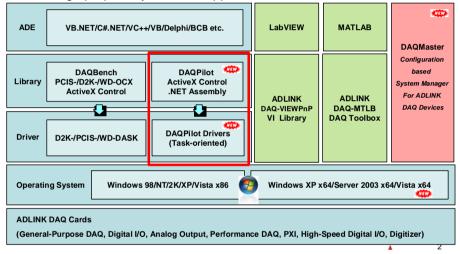
- Numbers of Channel: 32 digital output
 - > Output type: Darlington transistors
 - Output Voltage: open collector 5 V_{DC} (min.), up to 35 V_{DC} (max.)
- ► Sink Current: (PCI-7234)
 - 500 mA max @ 100% duty, for one of the eight transistors ON
 - ▷ 500 mA @ duty 20% for all transistors devices ON

(Note: the pulse width is 25ms for one duty cycle)

- ► Source Current:(PCI-7234P)
 - 500 mA max @ 100% duty, for one of the eight transistors ON
 - > 260 mA @ duty 10% for all transistors devices ON

(Note: the pulse width is 25 ms for one duty cycle)

- Isolated voltage:
 - ⊳ 5000 Vrms
- ► Throughput:
 - ▷ 10 KHz


General Specifications

- Connector: 37-pin D-type connector
- ► Operating Temperature: 0 to 60°C
- ► Storage Temperature: -20 to 80°C
- ► Humidity: 5 to 95%, non-condensing
- Power Consumption: +5V @ 180 mA (typical, with internal DC-DC power)
- Dimensions: 175 mm(H) x 107 mm(L)

1.5 Software Support

ADLINK Technology Inc., a leading provider of high-performance, high-quality data acquisition cards and platforms, delivers robust software support for its comprehensive line of DAQ cards with varying form factors including PCI Express®, PCI, CompactPCI, and PXI. ADLINK offers support not only for mainstream Windows and Linux OS, but also for third-party applications including Lab-VIEW® and MATLAB®. In addition, ADLINK also provides ActiveX componentware for measurement and SCADA/HMI, and breakthrough proprietary software applications.

Windows Drivers

ADLINK Task-oriented DAQ Driver/SDK and Wizard for Windows

DAQPilot provides one interface for all ADLINK DAQ products via

- DAQPilot API
- DAQPilot ActiveX Control
- DAQPilot .Net Assembly,

DAQPilot (Download and install from the DAQPilot product page: http://www.adlinktech.com/TM/DAQPilot.html

- ► Save development time
- ► Shorten learning curve

DAQPilot is a driver and SDK with a graphics-driven interface for various ADE. DAQPilot comes as ADLINK's commitment to provide full support to its comprehensive line of data acquisition products. DAQPilot is designed for the beginners as well as experienced programmers. Moreover, because DAQPilot can finish a DAQ task in minutes, it is suitable for programmers aiming to

immediately program ADLINK DAQ modules and integrate tasks to their own DAQ applications.

Note: ADLINK strongly recommend all users to install the newgeneration ADLINK Driver – DAQPilot instead legacy DASK drivers. For those users who have been using the legacy ADLINK DASK Drivers or are not able to connect to the internet, you still can get the latest update from ADLINK all-inone CD.

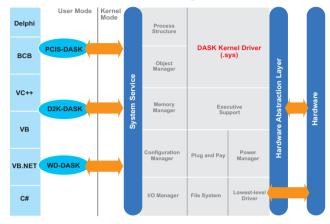
Configuration-Based Device Manager for ADLINK DAQ Cards

DAQMaster (.\Utility)

Device Hanager @ Sufferen H		dce Overdew Sape			-	_		Police •	S 2	- Contraction	est & Maasurer
DAQ		Tare .	Multer .		free	m Factor		De	iere .	Cutty	ocentWare
5	1.5			PCI	LPCI	Leo le	the Prof	Wadows	Laure	SAGest.	Componentaure
1 There was a second	.7	Analog Cultural Multilleri	42014218	¥.		× 1	-	POS-DASH	POS-DASKIN		POS-OCK
	2	wand color property	6308	¥.			-	POS-DASK	POS-DASKN	- W	P05-00X
CHELL I HAVE CALL	12		7200	¥	Ŧ	w.		POS-DASK	POS-DASKIN	w.	POS-OCK
A Device ManagetInstalled	3 4 5	1	7224					PCIS-DASH	POS-DASKIN		#05-00X
d. Vitur Device	5	1	7230				_	PCELOASH	POS-DASKN		POS-OCK
Analog Dubut Modules		1	7233				_	POSIDADE	POS-DASKIR		POS-OCK
Digha 1/0 Modules	7	1	7234		_		_	POS-DASH	RIADAGON		POS-DOX
Digitar Middler	7	1	7248	w.		w		POID-DASH	POS-DASKIN	w	POS-OCX
The CPU Modules		1	7249			4		POS-DASH	POS-EASKN		P05-00X
	30	1	7250	-	+			POS-DASK	POS-DASKIN	*	POS-OCK
Ka Multilancion Modules	111	1	7262					POSIDASH	POS-DASKN	*	P05-00K
Simultaneous Modules	32	1	7294	¥.	_			POS-DASH	ROS-DASKIN		
Seekin Modules	12	000000000	7294		_		_	POS-DASH	POS-DASKN		
S Iner Courter Modules	14	Digital JO Modules	7260	4				POS-DASH	ACIS-DASION		1102001
242-1201-0.0C-140.001	112	1990,000,000	7296	*			_	POLOAIN	POILDASKIK		POS-OCK
	16	1	7300			w .		POS-DASH	POS-DASKN	- W	FOS-OCK
	4.7	1	7432			w		POS-DASH	POS-DASKN	- T	POS-OCK
	10	1	7433			w .		PCK5-DASH	POS-DASKIN		POS-OCK
	19	1	7434	W.		w		POS-DASK	POS-EASKN	×	P05-00K
	20	1	7442	. W.				POS-DASK	POS-DASKN		1000000000
	24	1	7443					POS-DASH	POS-DASK/K		
	22	1	7444					PCIS-DASH	POS-DASA/R	Ψ.	
	~ 위 : : : : : : : : : : : : : : : : : :	1	7452					HOS-DASH	POS-DASK/H		
	24	1	7348					POS-DASH	POS-DASK/K		POS-OCK
	21	· · · ·	7296	w.				POS-DASH	PCrS-DASK/X	w.	POS-OCK
	28	Data Wolder	WENDAME 2	W.					POS-BASKN	. W	P05-00K
			3620	. 4			*	WEIGASK	VIC-DASKR		VID-OCK
	化实际法	Product Support Main	3rd Party	heppon	t & by	photon		C-315.24	No. of Contract, of	1.1.1.1.1.1.1.1	
Device Manage	r(Instal	led) Drag 1	he select			item to		inction but	tton to laun	ch	

The ADLINK DAQMaster is a smart device manager that enables access to ADLINK data acquisition and test and measurement products. DAQMaster delivers an all-in-one configurations, user can get a full support matrix to well configure ADLINK Test and Measurement products.

DAQMaster enables you to:


- ► Manage ADLINK devices and interfaces
- ► Manage ADLINK installed software
- Manage ADLINK DAQPilot tasks

ADLINK Legacy DAQ Card Drivers and SDK for Windows

- ► PCIS-DASK (.\Software Package\PCIS-DASK)
- D2K-DASK (.\Software Package\D2K-DASK)
- ▶ WD-DASK (.\Software Package\WD-DASK)

ADLINK's DASK are advanced 32-bit kernel drivers for customized DAQ application development. DASK enables users to perform detailed operations and achieve superior performance and reliability from their data acquisition system. DASK kernel drivers now support Windows Vista.

- PCIS-DASK for NuDAQ PCI/cPCI Series
- D2K-DASK for DAQ-2000 and PXI-2000 Series
- ► WD-DASK for High-speed Waveform Digitizer

DASK also supports the following:

- ► Supports Windows Vista 32- or 64-bit editions
- ► Supports AMD64 and Intel x86-64 architectures
- ► Digitally-signed for Windows Vista 64-bit Edition
- ► Utilizes WOW64 subsystem to ensure that 32-bit applications run normally on 64-bit Editions of Windows XP, Windows 2003 Server, and Windows Vista without modification.

More information about Windows Vista Support, please visit http://www.adlinktech.com/TM/VistaSupport.html.

Note: Please use PCIS-DASK with the LPCI-7230 and LPCIe-7230

Linux Drivers

Linux Drivers for ADLINK DAQ Cards

Drivers are available on the ADLINK website:

- PCIS-DASK/X
- D2K-DASK/X
- WD-DASK/X

ADLINK's DASK/X drivers are intended for developing customized data acquisition applications under Linux environments. The DASK/X drivers provide common APIs for ADLINK's extensive family of PCI, CompactPCI, and PXI plug-in data acquisition cards, and utilize the full capabilities of these cards under Linux environment.

- ▶ PCIS-DASK/X for NuDAQ PCI/cPCI Series
- D2K-DASK/X for DAQ-2000 and PXI-2000 Series
- ▶ WD-DASK/X for ADLINK High-speed Waveform Digitizer

More information about Linux drivers, please visit http:// www.adlinktech.com/TM/linux_daq.html

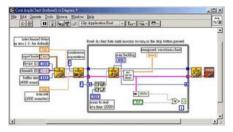
Note: Please use PCIS-DASK/X with the LPCI-7230 and LPCIe-7230

Third-party Software Support

MATLAB® Data Acquisition Toolbox Adapter for ADLINK DAQ Cards

 DAQ-MTLB for MATLAB® (.\Software Package\DAQ-MTLB)

The DAQ-MTLB for MATLAB® integrates ADLINK components with MATLAB® Data Acquisition Toolbox and enables users to control a wide range of ADLINK DAQ cards directly from the advanced MATLAB® environment.


- Directly control scores of ADLINK DAQ cards that come in different form factors including PCI Express®, PCI, cPCI, and PXI
- Compliant with MATLAB DAQ Toolbox 2.2 or higher (now at R2007a)
- Critical updates and support are available as ADLINK is now a MathWorks Connections Program partner
- ADLINK offers the only MATLAB® adapter for high-speed digitizers with up to 65 MHz sampling rate and 14-bit resolution

More information, please visit http://www.adlinktech.com/TM/ DAQ-MTLB.html

LabVIEW[™] Data Acquisition VI Set for ADLINK DAQ Cards

► DAQ Cards DAQ-LVIEW PnP for LabVIEWTM (.\Software Package\DAQ-LVIEW PnP)

The DAQ-LVIEW PnP is a set of LabView Virtual Instruments (Vis) that is fully-compatible with National Instrument's DAQ VIs. Based on the virtual instruments concept, DAQ-LVIEW PnP provides four additional tool panels in LabView, including analog input, analog output, digital I/O, and timer/counter.

The DAQ-LVIEW PnP is designed and verified for LabVIEW 7.0, and is compatible with LabVIEW 6.5, 7.1, 8.0, 8.2 and 8.5.

More information, please visit http://www.adlinktech.com/TM/labview-pnp.html

VEE[™] Interface for ADLINK DAQ Cards

- PCIS-VEE (.\Software Package\PCIS-VEE)
- ► D2K-VEE (.\Software Package\D2K-VEE)

1 mine -	1100 million and a second s
+5 mm	
	The second secon

Agilent VEE[™] is a popular visual programming environment for data acquisition that includes data analysis and control. VEE provides a visual programming interface that allows users to create programs by connecting objects such as acquisition routines, buttons and displays in a flow diagram. For users that are familiar with Agilent VEE, ADLINK has released the PCIS-VEE and D2K-VEE for seamless integration of the following NuDAQ data acquisition cards to the VEE environment:

PCIS-VEE.

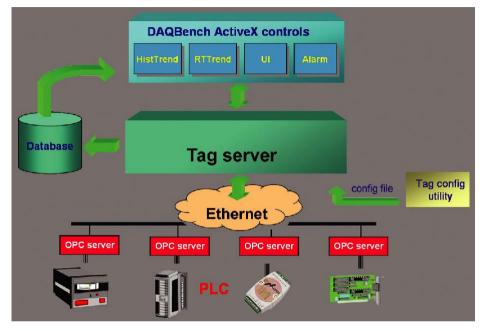
VEE for ADLINK NuDAQ Series DAQ cards

6208, 6308, 7200, 7230, 7233, 7234, 7250, 7252, 7248, 7249, 7296, 7300, 7396, 7432, 7433, 7434, 9111, 9112, 9113, 9114, 9118, 9812

▶ D2K-VEE.

VEE for DAQ-2000 Series DAQ cards

2010, 2005, 2006, 2204, 2205, 2206, 2501, 2502


The ADLINK PCIS-VEE and D2K-VEE drivers are designed and verified for Agilent VEE 4.5 environment.

Componentware/ActiveX Control

32-Bit ActiveX Controls for Measurement and SCADA/HMI

DAQBench (.\Software Package\DAQBench)

DAQBench is a specialized ActiveX control package designed for 32-bit measurement and SCADA/HMI applications. DAQBench leverages the power of the latest Microsoft ActiveX technology - the standard for code interchangeability and integration under various Windows platform. With DAQBench, programmers can take advantage of their familiarity with development environments such as Visual Basic, Visual C++, Delphi, and Borland C++ Builder to build their own applications.

Applications for Test and Measurement

Smart & Easy-to-Use Data Acquisition System Creator

DAQCreator (.\Software Package\DAQCreator)

DAQCreator is an out-of-the-box data acquisition software for acquiring, displaying, analyzing, and storing data from ADLINK DAQ cards. Equipped with a smart wizard and intuitive panels, users can easily configure data acquisition settings, change the appearance of data display, perform FFT to acquired data, and store data to a hard disk drive. Another remarkable feature of DAQCreator is the 40 MB/s stream-to-disk data throughput made possible through combination with advanced SCSI technology. DAQCreator delivers a cost-effective solution for high-speed data logging applications.

Get latest ADLINK Software Solutions from ADLINK Web site: http://www.adlinktech.com/TM/software-product.html

- **Note:** All company names appearing herein are trademarks or trade names of their respective owners.
- **Note:** Windows Vista is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

2 Installation

This chapter describes the configurations of the PCI-/cPCI-/LPCI-/LPCIe-723X Series. The PCI-/cPCI-/LPCI-/LPCIe-723X Series is Plug and Play and can easily be installed onto any PC system with PCI slots.

2.1 What You Have

- This User's Manual
- PCI-/cPCI-/LPCI-/LPCIe-723X Series Isolated Digital I/O Card
- ADLINK CD
- ► Software Installation Guide

If any of these items are missing or damaged, please contact the dealer from whom the product was purchased. Save the shipping materials and carton for future storage or shipping purposes.

2.2 Unpacking

Your PCI-/cPCI-/LPCI-/LPCIe-723X Series card contains sensitive electronic components that can be easily damaged by static electricity.

The card should be placed on a grounded anti-static mat. The operator should wear an anti-static wristband, grounded at the same point as the anti-static mat. Inspect the card module carton for obvious damage. Shipping and handling may cause damage to the module. Ensure that there are no shipping and handing damages on the module before processing.

After opening the card module carton, extract the system module and place it only on a grounded anti-static surface component side up.

Again, inspect the module for damage. Press down on all socketed ICs to make sure they are properly seated. Do this only with the module placed on a firm flat surface.

Note:	Do not apply power to the card if it has been damaged.
-------	--

2.3 Hardware Installation Outline

PCI configuration

The PCI cards (or CompactPCI cards) are equipped with a Plug and Play PCI controller, it can request base addresses and interrupt in accordance with the PCI standard. The system BIOS will install the system resource based on the PCI cards' configuration registers and system parameters (which are set by system BIOS). Interrupt assignment and memory usage (I/O port locations) of the PCI cards can be assigned by system BIOS only. These system resource assignments are done on a board-by-board basis. It is not recommended that the system resource be assigned by any other method.

PCI slot selection

The PCI card can be inserted into any PCI slot without any configuration for system resource.

Installation Procedures

- 1. Turn off the computer.
- 2. Turn off all accessories (printer, modem, monitor, etc.) connected to your computer.
- 3. Remove the computer cover.
- 4. Select a 32-bit PCI slot. PCI slots are shorter than ISA or EISA slots, and usually white or ivory in color.
- 5. Before handling the PCI cards, discharge any static buildup on your body by touching the metal case of the computer. Hold the edge and do not touch the components.
- 6. Position the board into the selected PCI slot.
- 7. Secure the card in place at the rear panel of the system.

2.4 Device Installation for Windows Systems

Once Windows Vista/XP/2003/2000 has started, the Plug and Play function of Windows system will find the new NuDAQ/NuIPC cards. If this is the first time installing NuDAQ/NuIPC cards on your Windows system, you will be prompted to enter the device information source. Please refer to the "Software Installation Guide" for instructions on installing the device.

2.5 Connector Pin Assignment

PCI-7230 Pin Assignment

The pin assignment of the 37 pins D-type connector CN2, which is an isolated DIO signal connector, shown below:

		\sim	~		
IDI_0	(1)	0	0	(20)	IDI_1
IDI_2	(2)	0		(20)	
IDI_4	(3)	0	0	(21)	IDI_3
IDI_6	(4)	0	0	(22)	IDI_5
IDI_8	(5)	0	0	(23)	IDI_7
IDI_10	(6)	0	0	(24)	IDI_9
IDI_12	(7)	Ō	0	(25)	IDI_11
		0	0	(26)	IDI_13
IDI_14	(8) (0)		0	(27)	IDI_15
EICOM	(9)	0	0	(28)	EOGND
EOGND		0	0	(29)	EOGND
IDO_0	(11)	0	0	(30)	IDO_1
IDO_2	(12)	0	0	(31)	IDO_3
IDO_4	(13)	0	0	(32)	IDO_5
IDO_6	(14)	0	õ	(33)	IDO_7
IDO_8	(15)	0	0		
IDO_10	(16)	0	0	(34)	IDO_9
IDO_12	(17)	0		(35)	IDO_11
IDO_14		0	0	(36)	IDO_13
VDD	、 <i>,</i> (19)	0	0)	(37)	IDO_15
		C			

Figure 2-1: PCI-7230 Pin Assignment

Legend:

IDI_n: Isolated digital input channel #n.

IDO_n: Isolated digital output channel #n.

EICOM: Common Ground or Common power of isolated input channels.

EOGND: Ground return path of isolated output channels.

VDD: Power supply of isolated output channels.

Note: The VDD must be supplied by an external power supply of 5 to 35VDC.

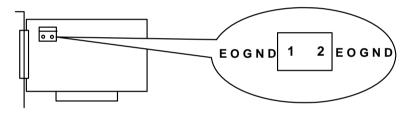


Figure 2-2: PCI-7230 Onboard Power and Ground terminal

cPCI-7230 Pin Assignment

The pin assignment of the cPCI-7230's 50 pins SCSI-II type connector CN1 is shown in the following diagram.

		\sim		
VDD	(1)	0	0	(26) VDD
EOGND		0	0	(27) EOGND
EOGND	1.1	0	0	(28) EOGND
EOGND	1.1	0	\bigcirc	(29) EOGND
IDO_7	(5)	0	0	(30) IDO_14
IDO_6	(6)	0	0	(31) IDO_15
IDO_5	(7)	0	0	(32) IDO_12
IDO_4	(8)	0	\circ	(33) IDO_13
IDO_3	(9)	0	\circ	(34) IDO_10
IDO_2	(10)	0	\bigcirc	(35) IDO_11
IDO_1	(11)	0	0	(36) IDO_8
IDO_0	(12)	0	0	(37) IDO_9
IDI_3H	(13)	0	\circ	(38) IDI_7L
IDI_3L	(14)	0	0	(39) IDI_7H
IDI_2H	(15)	0	\circ	(40) IDI_6L
IDI_2L	(16)	0	0	(41) IDI_6H
IDI_1H	(17)	0	\circ	(42) IDI_5L
IDI_1L	(18)	0	\circ	(43) IDI_5H
IDI_0H	(19)	0	\circ	(44) IDI_4L
IDI_0L	(20)	0	\circ	(45) IDI_4H
IDI_11	(21)	0	\circ	(46) IDI_15
IDI_10	(22)	0	\circ	(47) IDI_14
IDI_9	(23)	0	\circ	(48) IDI_13
IDI_8	(24)	0	0	(49) IDI_12
EICOM	(25)	0	9	[/] (50) EICOM
		\sim	_	

Figure 2-3: cPCI-7230 Pin Assignment

Legend:

IDI_n: Isolated digital input channel #n.

IDO_n: Isolated digital output channel #n.

- **EICOM:** Common ground or common power of isolated input channels #8 to 15.
- **IDI_nH:** High input of isolated differential DI channel #n.

IDI_nL: Low input of isolated differential DI channel #n.

- **EOGND:** Ground return path of isolated output channels.
- **VDD**: Power input signal for fly-wheel diode of DO channels.

LPCI/LPCIe-7230 Pin Assignment

The pin assignment of the LPCI-7230's 50 pins SCSI-II type connector CN1 is shown in the following diagram.

			~	
VDD	(1)	0	0)	(26) VDD
EICOM	(2)	0	0	(27) ISO5V
EICOM	(3)	0	0	(28) EICOM
EICOM	(4)	0	0	(29) EICOM
IDO_7	(5)	Ó	0	(30) IDO_14
IDO_6	(6)	0	0	(31) IDO_15
IDO_5	(7)	0	0	(32) IDO_12
IDO_4	(8)	0	0	(33) IDO_13
IDO_3	(9)	0	0	(34) IDO_10
IDO_2	(10)	0	0	(35) IDO_11
IDO_1	(11)	\bigcirc	\circ	(36) IDO_8
IDO_0	(12)	0	0	(37) IDO_9
IDI_3H	(13)	0	Õ	(38) IDI_7H
IDI_3L	(14)	Ó	\bigcirc	(39) IDI_7L
IDI_2H	(15)	0	0	(40) IDI_6H
IDI_2L	(16)	0	\circ	(41) IDI_6L
IDI_1H	(17)	0	0	(42) IDI_5H
IDI_1L	(18)	Ó	\mathbf{O}	(43) IDI_5L
IDI_0H	(19)	0	0	(44) IDI_4H
IDI_0L	(20)	0	0	(45) IDI_4L
IDI_11	(21)	0	0	(46) IDI_15
IDI_10	(22)	0	0	(47) IDI_14
IDI_9	(23)	0	0	(48) IDI_13
IDI_8	(24)	0	\circ	(49) IDI_12
EOGND	(25)	0	9/	(50) EOGND

Figure 2-4: LPCI/LPCIe-7230 Pin Assignment

Legend:

IDI_n: Isolated digital input channel #n.

IDO_n: Isolated digital output channel #n.

EICOM: Common ground or common power of isolated input channels #8 to 15.

IDI_nH: High input of isolated differential DI channel #n.

IDI_nL: Low input of isolated differential DI channel #n.

EOGND: Ground return path of isolated output channels.

VDD: Power input signal for fly-wheel diode of DO channels.

ISO5V: Isolatied power output 5V.

PCI-7233 Pin Assignment

The pin assignment of the 37 pins D-type connector CN1 is illustrated below:

			~		
IDI_0	(1)	0	\circ	(20)	IDI_1
IDI_2	(2)	0	0	(20)	
IDI_4	(3)	0	0		
IDI_6	(4)	0	0	(22)	
IGND	(5)	0		(23)	IDI_7
IDI 9	(6)	0	0	(24)	IDI_8
 IDI_11	(7)	0	0	(25)	IDI_10
IDI_13	(8)	0	0	(26)	IDI_12
IDI 15	(9)	0	0	(27)	IDI_14
IDI_15		Ō	0	(28)	IGND
IDI_18		0	0	(29)	IDI_17
		0	0	(30)	IDI_19
IDI_20	. ,		0	(31)	IDI_21
IDI_22		0	0	(32)	IDI_23
IGND		0	0	(33)	IDI_24
IDI_25		0	0	(34)	IDI_26
IDI_27	(16)	0	0	(35)	IDI_28
IDI_29	(17)	0	0	(36)	IDI 30
IDI_31	(18)	0	0	(37)	IGND
IGND	(19)	0	ン	(37)	
		\sim	-		

Figure 2-5: PCI-7233 Pin Assignment

Legend:

IDI_n: Isolated digital input channel n.

I.GND: Isolated common ground.

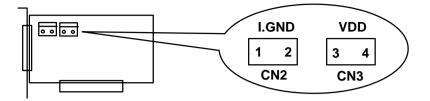


Figure 2-6: PCI-7233 Onboard Power and Ground terminal

PCI-7234 Pin Assignment

The pin assignment of the 37 pins D-type connector CN1, which is an isolated DIO signal connector, is shown below.

Figure 2-7: PCI-7234 Pin Assignment

Legend:

IDO_n: Isolated digital output signal channel n.

I.GND: Isolated Ground for all isolated output channels.

VDD: Power input signal for fly-wheel diode of DO channels.

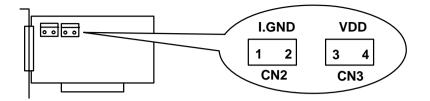


Figure 2-8: PCI-7234 Onboard Power and Ground terminal

PCI-7234P Pin Assignment

The pin assignment of the 37 pins D-type connector CN1, which is an isolated DIO signal connector, as shown below:

IDO_0 IDO_2 IDO-4 IDO_6	(1) (2) (3) (4)	0000	0000	(20) (21) (22) (23)	IDO_1 IDO_3 IDO_5 IDO_7
VDD IDO_9 IDO_11 IDO_13 IDO_15 IDO_16 IDO_16 IDO_20 IDO_22 VDD IDO_22 IDO_27 IDO_29 IDO_31 I.GND	(11) (12) (13) (14) (15) (16)	0000000000000000000	000000000000000000000000000000000000000	(24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (33) (33) (35) (35) (36) (37)	IDO_10 IDO_12 IDO_12 IDO_14 VDD IDO_17 IDO_17 IDO_21 IDO_21 IDO_23 IDO_24 IDO_26 IDO_28 IDO_30 VDD
	. ,	Ċ			

Figure 2-9: PCI-7234P Pin Assignment

Legend:

IDO_n: Isolated digital output signal channel n.

I.GND: Isolated ground for isolated output channels.

VDD: External power supply for IDO source drivers.



Figure 2-10: PCI-7234P Onboard Power and Ground terminal

2.6 Termination Board Connection

The 723X boards are equipped with a DB-37 or a 50-pin SCSI-II female connector. Available termination boards include:

ACLD-9137-01:

General-Purpose termination board with a 37-pin D-sub male connector.

DIN-37D-01:

Termination board with a 37-pin D-sub connector and DIN-Rail mounting (including one 1-meter ACL-10137 cable).

DIN-50S-01:

Termination board with a 50-pin SCSI-II connector and DIN-Rail mounting (including one 1-meter ACL-10250 cable)

3 Register Format

The registers format is described in this chapter. This information is quite useful for programmers who wish to handle the card by low-level programming. However, it is recommended that the user has a deeper understanding of the PCI interface before starting any low-level programming. This chapter can also assist users in using the software driver to manipulate this card.

3.1 PCI PnP Registers

This PCI card functions as a 32-bit PCI target device to any master on the PCI bus. There are three types of registers: PCI Configuration Registers (PCR), Local Configuration Registers (LCR), and PCI-723X registers.

The PCR, which is compliant with the PCI-bus specifications, is initialized and controlled by the Plug and Play PCI BIOS. Users can study the PCI BIOS specification to understand the operation of the PCR. Please contact the PCISIG for specifications of the PCI interface.

The PCI bus controller PCI 9052 is provided by PLX technology Inc. (www.plxtech.com). For further detail on the LCR, please visit PLX technology's website to download the relative information. Users are not required to understand the details of the LCR if using the software library. The PCI PnP BIOS assigns the base address of the LCR to offset 14h of PCR.

The PCI-723X registers are shown in the next section. The base address, which is also assigned by the PCI PnP BIOS, is located at offset 18h of PCR. Therefore, users can read the 18h of PCR to find the base address by using the BIOS function call.

Do not try to modify the base address and interrupt assigned by the PCI PnP BIOS as it may cause resource conflict within your system.

3.2 I/O Registers Format

The PCI-7230/cPCI-7230/LPCI-7230/LPCIe-7230 requires one 32-bit address in the PC I/O address space. Table 3.1 shows the I/ O address of each register with respect to the base address.

Address	Write	Read	
Base (0 - 1)	Isolated DO	Isolated DI	

Table 3-1: I/O Address Map of PCI-7230/cPCI-7230/LPCI-7230/LPCIe-7230

The PCI-7233 requires one 32-bit address in the PC I/O address space. Table 3.2 shows the address.

Address	Write	Read	
Base (0 - 3)		Isolated DI	

Table 3-2: I/O Address Map of PCI-7233

The PCI-7234/7234P requires one 32-bit address in the PC I/O address space. Table 3.3 shows the address.

Address	Write	Read	
Base (0 - 3)	Isolated DO		

Table 3-3: I/O Address Map of PCI-7234/7234P

CAUTION:

All the I/O ports above are 32-bit width.

8-bit or 16-bit I/O access is NOT allowed.

3.3 Digital Input Register

There is a total of 16 and 32 digital input channels on the PCI-7230/cPCI-7230/LPCI-7230/LPCIe-7230 and PCI-7233 respectively. Each bit corresponds to a signal on the digital input channel. IDI_16 to IDI_31 are only available on PCI-7233.

Address: BASE + 0 to BASE + 3

Attribute: read only

Data Format:

Bit	7	6	5	4	3	2	1	0
Base + 0	IDI_7	IDI_6	IDI_5	IDI_4	IDI_3	IDI_2	IDI_1	IDI_0
Base + 1	IDI_15	IDI_14	IDI_13	IDI_12	IDI_11	IDI_10	IDI_9	IDI_8
Base + 2	IDI_23	IDI_22	IDI_21	IDI_20	IDI_19	IDI_18	IDI_17	IDI_16
Base + 3	IDI_31	IDI_30	IDI_29	IDI_28	IDI_27	IDI_26	IDI_25	IDI_24

Table 3-4: Digital Input Register

Legend:

IDI_n: Isolated Digital Input CH n.

3.4 Digital Output Register

There is a total of 16 and 32 digital output channels on the PCI-7230/cPCI-7230/LPCI-7230/LPCIe-7230 and PCI-7234/7234P respectively. Each bit corresponds to a signal on the digital output channel. IDO_16 to IDO_31 are only available on PCI-7234/7234P.

Address: BASE + 0 to BASE + 3

Attribute: write only

Data Format:

Bit	7	6	5	4	3	2	1	0
Base + 0	IDO_7	IDO_6	IDO_5	IDO_4	IDO_3	IDO_2	IDO_1	IDO_0
Base + 1	IDO_15	IDO_14	IDO_13	IDO_12	IDO_11	IDO_10	IDO_9	IDO_8
Base + 2	IDO_23	IDO_22	IDO_21	IDO_20	IDO_19	IDO_18	IDO_17	IDO_16
Base + 3	IDO_31	IDO_30	IDO_29	IDO_28	IDO_27	IDO_26	IDO_28	IDO_24

Table 3-5: Digital Output Register

Legend:

IDO_n: Isolated Digital Output CH n.

4 **Operation Theory**

4.1 Isolated Digital Input Circuits

The isolated digital output is an open collector transistor output. The input can accept voltages of up to 24 V. The input resisters on PCI-7230/7233, cPCI-7230 and LPCI-7230/LPCIe-7230 are 1.2 K Ω . The connection between outside signal and PCI-7230/7233, cPCI-7230 and LPCI-7230/LPCIe-7230 are shown below.

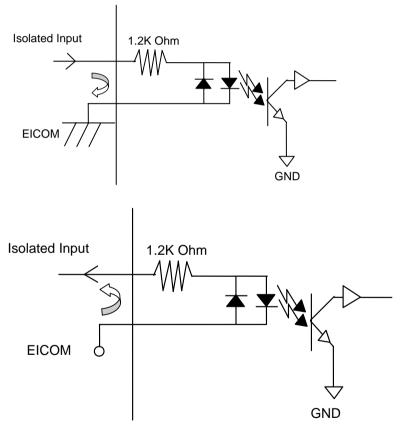


Figure 4-1: Input circuits of 7230 and 7233 series

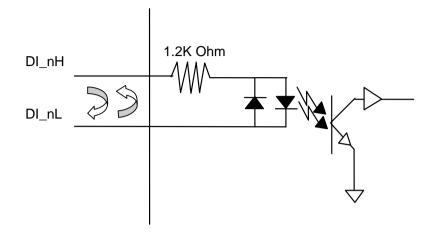


Table 4-1: Differential Input circuits of cPCI-7230/LPCI-7230/LPCIe-7230

4.2 Isolated Digital Output Circuits

On the 7230/7234 series, an external voltage source, minimum 5V, maximum 35 VDC, is necessary to power the internal isolated circuits. It is connected with the VDD pin, When the isolated digital output goes to high, the sink current will be from VDD.

On the 7230/7234 series, the VDD pin is used as a "fly-wheel" diode, which can protect the driver if the loading is inductance loading such as relay, motor, or solenoid.

The VDD must connect to the external power to form a fly-wheel current loop.

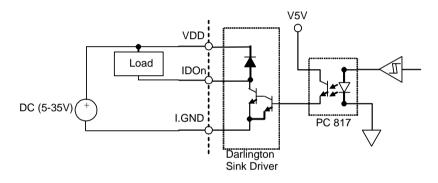
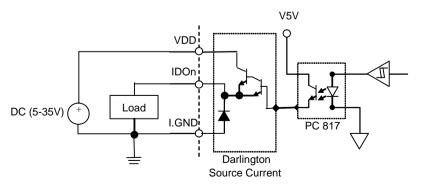



Figure 4-2: Isolate output circuits of PCI-7234 (sink current)

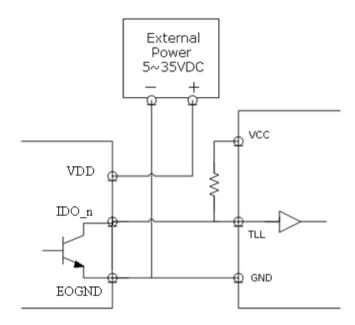


Figure 4-4: Isolation Output to TTL Input connection

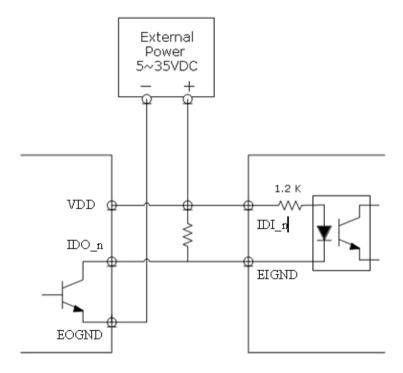


Figure 4-5: Isolation Output to Isolation Input connection

4.3 Change of State Detection

What is COS?

The COS (Change of State) occurs when the input state (logic level) is changed from low to high or from high to low. The COS detection circuit is used to detect the edge of level change. In the PCI-7233 card, the COS detection circuit is applied to all 32 channels input channels. If any channel is changed, the COS detection circuit generates an interrupt request signal.

Structure of COS detection and Dual Interrupt System

The dual interrupt system is used in PCI-7233. Dual interrupt occurs when the hardware can generate two interrupt request signals at the same time and the software can service these two requests with ISR. Note that dual interrupt does not mean the card occupies two IRQ levels. The two interrupt request signals (INT1 and INT2) come from COS detection output signal #1 and #2. The INT1 is inserted when any channel from 0 to 15 is changed. The INT2 is inserted when any channel between 16 to 31 is changed. The interrupt system is illustrated below.

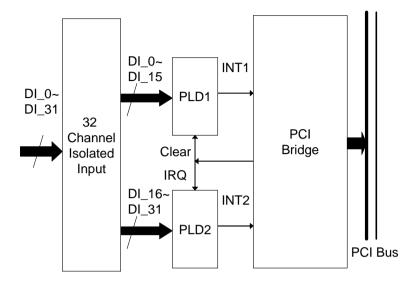


Figure 4-6: Dual Interrupt System of PCI-7233

COS Detection

The following timing is an example of the COS detection. Every DI signal's edge change can be detected. All the DI channels edge will be 'OR' together to generate the INT1 or INT2 IRQ signals.

If INT1 or INT2 irq Signals generate, the signal will be latch its state. The user can use the "_7233_CLR_IRQ" function to clear, INT1, or INT2 IRQ signal state.

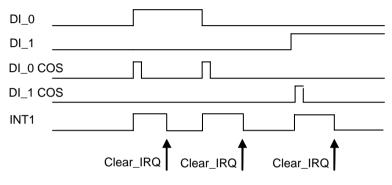


Figure 4-7: Example of COS detection